2024.06.18 2024.07.02 math-calc PR 数列の和その1 orpheus 記事内に商品プロモーションを含む場合があります \[ 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + 4 \cdot 5 \cdot 6 + 5 \cdot 6 \cdot 7 + 6 \cdot 7 \cdot 8 = \frac{1}{4} \cdot 6 \cdot 7 \cdot 8 \cdot 9=756 \] の計算方法は \[\sum_{k=1}^n k \cdot (k+1) \cdot (k+2) =\frac{1}{4}n(n+1)(n+2)(n+3) \] の計算式についての解説と応用をしていきたいと思います。 これは\[\sum_{k=1}^n k^2 =\frac{1}{6}n(n+1)(2n+1)\]の導きかたにも使えます。 蛇足ですが、この公式への代入の仕方は 1~10、迄の2乗の和ならば \[\frac{1}{6}\times 10 \times 11 \times (10+11) \] \[2n+1を計算をするのは n+(n+1)=2n+1\]でやると楽です つまり\[1^2から10^2までの和は\frac{1}{6}\times10\times (10の次) \times\{ 10+(10の次)\}\]です。 では、 \[ 1 \cdot 2 \cdot 3 \cdot 4 – 0 \cdot 1 \cdot 2 \cdot 3 = 4\cdot (1\cdot2\cdot 3 ) \] \[+2 \cdot 3 \cdot 4 \cdot 5 – 1 \cdot 2 \cdot 3 \cdot 4 = 4\cdot (2\cdot3\cdot 4 ) \] \[+3 \cdot 4 \cdot 5 \cdot 6 – 2 \cdot 3 \cdot 4 \cdot 5 = 4\cdot (3\cdot4\cdot 5 ) \] \[+4 \cdot 5 \cdot 6 \cdot 7 – 3 \cdot 4 \cdot 5 \cdot 6 = 4\cdot (4\cdot 5\cdot 6 ) \] \[+5 \cdot 6 \cdot 7 \cdot 8 – 4 \cdot 5 \cdot 6 \cdot 7 = 4\cdot (5\cdot6\cdot 7 ) \] \[+6 \cdot 7 \cdot 8 \cdot 9 – 5 \cdot 6 \cdot 7 \cdot 8 = 4\cdot (6\cdot7\cdot 8 ) \] \[6 \cdot 7 \cdot 8 \cdot 9 =4 \times (1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + 4 \cdot 5 \cdot 6 + 5 \cdot 6 \cdot 7 + 6 \cdot 7 \cdot 8)\] なので 両辺を4で割れば最初の式になります 左辺が最後の項以外すべて消えてしまうのがミソです 関連 ABOUT ME 教諭公立高等学校で数学と情報科学を教える教師です。授業では、iPadを活用した指導方法や、数学の新しい解法を生徒たちに紹介しています。音楽にも深い興味を持っており、特にピタゴラス音階や純正律など、数学から派生した音楽理論に魅了されています。また、合唱のアカペラでのハーモニー作りにも情熱を注いでいます。プライベートでは、コーヒーを楽しみながら様々な音楽を聴くことが趣味です。このブログでは、iPadの便利な使い方や数学の面白い解き方、音楽理論についても掘り下げていきたいと考えています。